

Thomas Peitzmann Utrecht University/NIKHEF for the STAR collaboration

Outline

- High-p_T Inclusive Spectra
- High-p_T Dihadron Correlations
- Intermediate-p_T Near-Side
- Intermediate-p_T Away-Side
- Heavy Flavour
- The Future: Photons

High-p_T Inclusive Spectra

Where's the fragmentation regime? What's the lower limit on the medium density?

Inclusive Suppression

 studied with nuclear modification factor

$$R_{AA}(p_T) = \frac{d^2N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

- established probe of final state suppression
 - sensitive to density of the medium
- very close to maximum suppression
 - provides only lower bound on density
- surface bias in high p_T hadron emission!

Dependence of Suppression on Geometry

- Cu+Cu fit smoothly to trend of Au+Au
 - smaller uncertainties for small N_{part}
- universal dependence on N_{part}
 - does not strongly favour particular scaling law

Baryon vs. Meson R_{cp}

- baryon/meson separation at intermediate p_T
 - baryon enhancement
- explained by nonfragmentation contribution
 - e.g. recombination
- disappears at p_T ≈ 6 GeV/c
 - fragmentation limit?
 - difference betweenq and g energy loss?

v₂ of Identified Hadrons

- finite v₂ at high p_T
- saturation and onset of decline at p_T > 3 GeV/c
- clear meson/baryon scaling at intermediate p_T
- v₂ from anisotropy in jet quenching
 - path length dependence

- meson/baryon scaling extends out to high p_T
- possibly: surface bias yields identical R_{AA} (R_{cp}) in central collisions for q and g, but difference still remains in v_2 from non-central collisions

High-p_T Dihadron Correlations

Can we get an upper limit on the medium density? How does fragmentation work after energy loss?

Dihadrons in Heavy Ion Collisions

- near-side correlation unchanged
- away-side peak suppressed in central Au+Au
 - consistent with surface emission
- distributions in d+Au similar to p+p
 - suppression is final state effect
- more intuitive hint for "jet" suppression, but quantitatively much more difficult

 $8 < p_T(trig) < 15 \text{ GeV/c}$

Emergence of Di-Jets

- clear away side peak even in central Au+Au for high trigger p_T
- background reduced for higher associated p_T
- little modification of nearside yield
- suppression of away-side yield apparent in central Au+Au

Width of Away-Side Peaks

 $8 < p_T(trig) < 15 \text{ GeV/c}$

- away-side widths similar for central and peripheral
- fragmentation as in vacuum?

Momentum Distribution of

Near-Side Yield

 Modified di-hadron fragmentation function (X.-N. Wang)

(X.-N. Wang)
$$D^{h_1h_2}(z_T, p_T^{trig}) = p_T^{trig} \frac{d\sigma_{AA}^{h_1h_2}/dp_T^{trig}dp_T}{d\sigma_{AA}^{h_1}/dp_T^{trig}}$$

$$Z_T \equiv \frac{p_T^{assoc}}{p_T^{trig}}$$

- near-side yield consistent with no modification
 - no dependence of ratio on z_T
 in measured range

Momentum Distribution of

Away side, ΙΔφ - πΙ < 0.63

- away-side yield strongly suppressed
 - level of RAA
 - different surface bias?
 - upper limit on medium density obtainable?
- no dependence of ratio on z_T in measured range
 - vacuum fragmentation?

Adams et al., nucl-ex/0604018

T. Peitzmann, Hard Probes 2006, Asilomar

Intermediate-p_T Near-Side

Do we see the coupling of the jet to the medium? Can we test recombination models?

Near-Side Long-Range $\Delta\eta$ Correlation: the Ridge

Au+Au 20-30%

- a) Near-side jet-like corrl.
 - + ridge-like corrl.
 - + v₂ modulated bkg.
- b) Ridge-like corrl.+ v₂ modulated bkg.
- c) Away-side corrl. + v₂ modulated bkg.

Centrality Dependence of the Ridge

 $3 < p_{t,trigger} < 4 \text{ GeV}$ and $p_{t,assoc.} > 2 \text{ GeV}$

- yield of associated
 particles can be
 separated into a jet-like
 yield and a ridge yield
 - jet-like yield consistent in η and φ and independent of centrality
 - ridge yield increases with centrality

T. Peitzmann, Hard Probes 2006, Asilomar

Rapidity Dependence

- approximately linear dependence on rapidity
 - longitudinal scaling
 - relation to longitudinal flow?
 - shorter range for larger trigger p_T

Dependence on Trigger p_T

- yield significant up to
 p_T = 9 GeV/c in central
 - clearly jet-related
- no strong dependence on trigger hadron momentum
 - increase of jet-like yield
 ⇒ decrease of relative
 yield

Shape of Associated Particle Spectra

- jet-like spectra harder than inclusive
 - flatter for higher trigger p_T
 - ridge spectra similar to inclusive
 - slightly larger slope
 - approximately independent of trigger p_T

J. Putschke et al., parallel talk

Recombination and Dihadron Correlations

- large baryon yield at intermediate p_T explained by recombination models
- difference in correlation structure expected
 - naïve expectation from pure thermal reco: no correlation
 - more realistic models: some correlation due to thermalshower reco (R. Hwa)
- hadrons from recombination should show a modified correlation

- larger fraction of baryons produced from recombination (compared to mesons)
- stronger modification of correlation structure expected for baryon triggers

Identified Hadron Triggers

- total associated yield increases with centrality: ridge!
- jet-like yield independent of centrality
 - differences for strange particles

Identified Hadron Triggers

- less associated jet-like yield for Λ
 - higher ridge yield for Λ
 - consistent with recombination?
- attention when extracting correlation strength in $\Delta \phi$ only!

Interpretation of the Ridge

- coupling of high energy parton to longitudinal flow (Armesto et al, nuclex/0405301)
 - expect broadening but not plateau
- correlation from radial flow (Voloshin nucl-th/0312065)
 - not expected at high p_T
- thermal recombination + local heating from energy loss (Chiu & Hwa, Phys. Rev. C72 034903, 2005)
 - qualitatively consistent

- more general:
 - ridge is jet-related structure
 with properties similar to bulk
 - early coupling: before longitudinal expansion
 - local energy (heating) or momentum transfer (collective flow)
- Does ridge measure the amount of energy transferred to the bulk?

Intermediate-p_T Away-Side

Where does the jet energy go? Is their conical flow?

Two-Particle Correlations Soc) < 2.5 GeV/c (Mach Cone?)

- broad away-side distribution in central Au+Au
 - enhanced yield for lower p_T
 - consistent with two-peak structure
 - Mach cone or deflected jets?
 ⇒ study 3-part. correlation
 - sensitive to elliptic flow subtraction
- dependence on trigger p_T?
- enhanced yield for near-side
 - quantitatively consistent with ridge
 - near-side enhancement only ridge?
 ⇒ vacuum fragmentation?

Conical Flow vs Deflected Jets

Three-Particle Correlations

- signal obtained by subtraction of dominant backgrounds
 - flow components, jet-related two-particle correlation
- improved analysis compared to QM (e.g. high statistics)
 - additional check with cumulant analysis under way
 - careful: different assumptions on background normalisation!
- clear elongation (jet deflection)
- off-diagonal signal related to mach cone?

Heavy Flavour

Do we understand heavy flavour production? What is the energy loss mechanism?

Electrons in p+p Compared to pQCD

- single (non-photonic) electrons mainly from c and b
- pQCD (FONLL) scaled by K-factor ≈5.7 to match the data
- Ratio Data/pQCD is independent of p_T for $p_T < 8$ GeV/c
 - same K-factor for charm and beauty?

Single Electron R_{AA}

- R_{AA} to 10 GeV/c in non-photonic electrons
- suppression is approximately the same as for light hadrons

theoretical description needs:

p_⊤ (GeV/c)

- extremely high density or
- significant contributions of collisional energy loss and dominance of charm up to high p_T

The Future: Photons

The reference probe.

Can we tag the initial jet energy?

Can we measure energy loss?

d+Au 2003

Neutral Pion Spectra

- measured with STAR Barrel EMC
- reconstruction of twophoton invariant mass
- agreement with NLO pQCD in d+Au
- used as input for direct photon analysis
 - statistical subtraction of decay background

Direct Photons in d+Au

$$R = \frac{\left(\gamma_{incl}/\pi^{0}\right)_{measured}}{\left(\gamma_{decay}/\pi^{0}\right)_{simulated}} \approx 1 + \frac{\gamma_{direct}}{\gamma_{decay}}$$

- proof of principle measurement with STAR Barrel EMC
- setting a baseline for Au+Au
- consistent with NLO pQCD
- reduction of systematic errors needed to extract spectrum

Towards γ-Jet in Au+Au

- photon tag
 - potentially clean jet preparation
- clear near-side and awayside correlation peaks
- strong contamination from π^0 decay photons
 - reduction in near-side strength compatible with direct photon component
- work in progress ...

Shower Shape Analysis in d+Au

T. Peitzmann, Hard Probes 2006, Asilomar

- charged hadrons associated with high E_T EM shower
- shower width selects π^0 and γ candidates
- measure associated yield for π^0 triggers
 - reduction of yield can be used to estimate direct γ
 contribution in other samples
- possibility to enrich trigger sample with direct γ!

Summary

- fragmentation regime reached at p_T = 6 GeV/c
 - elliptic flow consistent?
- upper limit on density from di-hadron correlations?
- jet-like yield consistent with vacuum fragmentation
 - width, yield and momentum spectrum unchanged
- enhancement on near-side due to soft correlation
 - long range in η (ridge)
 - ridge yield indicates amount of energy loss?
 - careful in $\Delta \phi$ -only analysis!

- softening and broadening on the away-side
 - 2-part. correlations consistent with Mach cone
 - 3-part. correlations show jetdeflection - Mach cone signal not well established
- heavy flavour
 - importance of c and b
 - energy loss mechanism?
- photons
 - direct photons in d+Au
 - getting ready to exploit EMC capabilities for photon tagged jets

STAR

The STAR Collaboration

U.S. Labs:

Argonne, Lawrence Berkeley, and Brookhaven National Labs

U.S. Universities:

UC Berkeley, UC Davis, UCLA, Caltech, Carnegie Mellon, Creighton, Indiana, Kent State, MIT, MSU, CCNY, Ohio State, Penn State, Purdue, Rice, Texas A&M, UT Austin, Washington, Wayne State, Valparaiso, Yale

Brazil:

Universidade de Sao Paolo

China:

IHEP - Beijing, IPP - Wuhan, USTC, Tsinghua, SINAP, IMP Lanzhou

Croatia:

Zagreb University

Czech Republic:

Nuclear Physics Institute

England:

University of Birmingham

France:

Institut de Recherches Subatomiques Strasbourg, SUBATECH - Nantes

Germany:

Max Planck Institute – Munich University of Frankfurt

India:

Bhubaneswar, Jammu, IIT-Mumbai, Panjab, Rajasthan, VECC

Netherlands:

NIKHEF/Utrecht

Poland:

Warsaw University of Technology

Russia:

MEPHI – Moscow, LPP/LHE JINR – Dubna, IHEP – Protvino

South Korea:

Pusan National University

Switzerland:

University of Bern